کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6941386 870256 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A subspace co-training framework for multi-view clustering
ترجمه فارسی عنوان
چارچوب همکاری مشترک در زمینه خوشه بندی چندرسانه ای
کلمات کلیدی
خوشه بندی چندگانه، خوشه بندی فضای مجاز، همکاری آموزشی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
This paper addresses the problem of unsupervised clustering with multi-view data of high dimensionality. We propose a new algorithm which learns discriminative subspaces in an unsupervised fashion based upon the assumption that a reliable clustering should assign same-class samples to the same cluster in each view. The framework combines the simplicity of k-means clustering and Linear Discriminant Analysis (LDA) within a co-training scheme which exploits labels learned automatically in one view to learn discriminative subspaces in another. The effectiveness of the proposed algorithm is demonstrated empirically under scenarios where the conditional independence assumption is either fully satisfied (audio-visual speaker clustering) or only partially satisfied (handwritten digit clustering and document clustering). Significant improvements over alternative multi-view clustering approaches are reported in both cases. The new algorithm is flexible and can be readily adapted to use different distance measures, semi-supervised learning, and non-linear problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 41, 1 May 2014, Pages 73-82
نویسندگان
, , ,