کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
694293 | 1460571 | 2014 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Neural Network-based Adaptive State-feedback Control for High-order Stochastic Nonlinear Systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper focuses on investigating the issue of adaptive state-feedback control based on neural networks (NNs) for a class of high-order stochastic uncertain systems with unknown nonlinearities. By introducing the radial basis function neural network (RBFNN) approximation method, utilizing the backstepping method and choosing an approximate Lyapunov function, we construct an adaptive state-feedback controller which assures the closed-loop system to be mean square semi-global-uniformly ultimately bounded (M-SGUUB). A simulation example is shown to illustrate the effectiveness of the design scheme.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Automatica Sinica - Volume 40, Issue 12, December 2014, Pages 2968-2972
Journal: Acta Automatica Sinica - Volume 40, Issue 12, December 2014, Pages 2968-2972