کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
694361 890115 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nonlinear Internal Model Control for Bearingless Induction Motor Based on Neural Network Inversion
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Nonlinear Internal Model Control for Bearingless Induction Motor Based on Neural Network Inversion
چکیده انگلیسی

The bearingless induction motor is a nonlinear, multi-variable and strong-coupled system. For this system, a novel internal model control strategy based on neural network αth-order inverse system theory is proposed to realize the decoupling control. By cascading the αth-order inverse model approximated by the dynamic neural network with the original system, the nonlinear bearingless induction motor system is decoupled into four independent pseudo-linear subsystems, that is, two radial displacement subsystems, a speed subsystem and a rotor flux subsystem. Then, the internal model control method is introduced to the four pseudo-linear subsystems to ensure the robustness and anti-jamming ability of the closed-loop system. The effectiveness and superiority of the proposed strategy are demonstrated by simulation and experiment.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Automatica Sinica - Volume 39, Issue 4, April 2013, Pages 433-439