کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
694462 890132 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improvement Comparison of Different Lattice-based Discriminative Training Methods in Chinese-monolingual and Chinese-English-bilingual Speech Recognition
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Improvement Comparison of Different Lattice-based Discriminative Training Methods in Chinese-monolingual and Chinese-English-bilingual Speech Recognition
چکیده انگلیسی

Discriminative training approaches such as minimum phone error (MPE), feature minimum phone error (fMPE) and boosted maximum mutual information (BMMI) have brought remarkable improvement to the speech community in recent years, however, much work still remains to be done. This paper investigates the performances of three lattice-based discriminative training methods in detail, and does a comparison of different I-smoothing methods to obtain more robust models in the Chinese-monolingual situation. The complementary properties of the different discriminative training methods are explored to perform a system combination by recognizer output voting error reduction (ROVER). Although discriminative training is normally used in monolingual systems, this paper systematically investigates its use for bilingual speech recognition, including MPE, fMPE, and BMMI. A new method is proposed to generate significantly better lattices for training the bilingual model, and complementary discriminative training models are also explored to get the best ROVER performance in the bilingual situation. Experimental results show that all forms of discriminative training can reduce the word error rate in both monolingual and bilingual systems, and that combining complementary discriminative training methods can improve the performance significantly.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Automatica Sinica - Volume 38, Issue 7, July 2012, Pages 1162-1168