کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
694647 890169 2008 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An Adaptive Learning Method for the Generation of Fuzzy Inference System from Data
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
An Adaptive Learning Method for the Generation of Fuzzy Inference System from Data
چکیده انگلیسی

Designing a fuzzy inference system (FIS) from data can be divided into two main phases: structure identification and parameter optimization. First, starting from a simple initial topology, the membership functions and system rules are defined as specific structures. Second, to speed up the convergence of the learning algorithm and lighten the oscillation, an improved descent method for FIS generation is developed. Furthermore, the convergence and the oscillation of the algorithm are systematically analyzed. Third, using the information obtained from the previous phase, it can be decided in which region of the input space the density of fuzzy rules should be enhanced and for which variable the number of fuzzy sets that used to partition the domain must be increased. Consequently, this produces a new and more appropriate structure. Finally, the proposed method is applied to the problem of nonlinear function approximation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Automatica Sinica - Volume 34, Issue 1, January 2008, Pages 80-85