کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
694670 890174 2007 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Study of Feature Extraction Based on Autoregressive Modeling in EGG Automatic Diagnosis
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Study of Feature Extraction Based on Autoregressive Modeling in EGG Automatic Diagnosis
چکیده انگلیسی

This article explores the ability of multivariate autoregressive model (MAR) and scalar AR model to extract the features from two-lead electrocardiogram signals in order to classify certain cardiac arrhythmias. The classification performance of four different EGG feature sets based on the model coefficients are shown. The data in the analysis including normal sinus rhythm, atria premature contraction, premature ventricular contraction, ventricular tachycardia, ventricular fibrillation and superventricular tachycardia is obtained from the MIT-BIH database. The classification is performed using a quadratic discriminant function. The results show the MAR coefficients produce the best results among the four EGG representations and the MAR modeling is a useful classification and diagnosis tool.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Automatica Sinica - Volume 33, Issue 5, May 2007, Pages 462-466