کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6949287 1451255 2016 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Blind spectral unmixing based on sparse component analysis for hyperspectral remote sensing imagery
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سیستم های اطلاعاتی
پیش نمایش صفحه اول مقاله
Blind spectral unmixing based on sparse component analysis for hyperspectral remote sensing imagery
چکیده انگلیسی
Recently, many blind source separation (BSS)-based techniques have been applied to hyperspectral unmixing. In this paper, a new blind spectral unmixing method based on sparse component analysis (BSUSCA) is proposed to solve the problem of highly mixed data. The BSUSCA algorithm consists of an alternative scheme based on two-block alternating optimization, by which we can simultaneously obtain the endmember signatures and their corresponding fractional abundances. According to the spatial distribution of the endmembers, the sparse properties of the fractional abundances are considered in the proposed algorithm. A sparse component analysis (SCA)-based mixing matrix estimation method is applied to update the endmember signatures, and the abundance estimation problem is solved by the alternating direction method of multipliers (ADMM). SCA is utilized for the unmixing due to its various advantages, including the unique solution and robust modeling assumption. The robustness of the proposed algorithm is verified through simulated experimental study. The experimental results using both simulated data and real hyperspectral remote sensing images confirm the high efficiency and precision of the proposed algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 119, September 2016, Pages 49-63
نویسندگان
, , , , , ,