کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6949326 | 1451258 | 2016 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Unsupervised polarimetric SAR urban area classification based on model-based decomposition with cross scattering
ترجمه فارسی عنوان
طبقه بندی مناطق شهری منطقه ای با ضریب اطمینان ناپایدار بر اساس تجزیه و تحلیل مبتنی بر مدل با پراکندگی متقابل
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
سیستم های اطلاعاتی
چکیده انگلیسی
Since it has been validated that cross-polarized scattering (HV) is caused not only by vegetation but also by rotated dihedrals, in this study, we use rotated dihedral corner reflectors to form a cross scattering matrix and propose an extended four-component model-based decomposition method for PolSAR data over urban areas. Unlike other urban area decomposition techniques which need to discriminate the urban and natural areas before decomposition, this proposed method is applied on PolSAR image directly. The building orientation angle is considered in this scattering matrix, making it flexible and adaptive in the decomposition. Therefore, we can separate cross scattering of urban areas from the overall HV component. Further, the cross and helix scattering components are also compared. Then, using these decomposed scattering powers, the buildings and natural areas can be easily discriminated from each other using a simple unsupervised K-means classifier. Moreover, buildings aligned and not aligned along the radar flight direction can be also distinguished clearly. Spaceborne RADARSAT-2 and airborne AIRSAR full polarimetric SAR data are used to validate the performance of our proposed method. The cross scattering power of oriented buildings is generated, leading to a better decomposition result for urban areas with respect to other state-of-the-art urban decomposition techniques. The decomposed scattering powers significantly improve the classification accuracy for urban areas.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 116, June 2016, Pages 86-100
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 116, June 2016, Pages 86-100
نویسندگان
Deliang Xiang, Tao Tang, Yifang Ban, Yi Su, Gangyao Kuang,