کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6949427 | 1451270 | 2015 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Estimation of seismic building structural types using multi-sensor remote sensing and machine learning techniques
ترجمه فارسی عنوان
برآورد ساختارهای ساختمانی لرزه ای با استفاده از چند سنسور سنجش از دور و تکنیک های یادگیری ماشین
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
سیستم های اطلاعاتی
چکیده انگلیسی
Detailed information about seismic building structural types (SBSTs) is crucial for accurate earthquake vulnerability and risk modeling as it reflects the main load-bearing structures of buildings and, thus, the behavior under seismic load. However, for numerous urban areas in earthquake prone regions this information is mostly outdated, unavailable, or simply not existent. To this purpose, we present an effective approach to estimate SBSTs by combining scarce in situ observations, multi-sensor remote sensing data and machine learning techniques. In particular, an approach is introduced, which deploys a sequential procedure comprising five main steps, namely calculation of features from remote sensing data, feature selection, outlier detection, generation of synthetic samples, and supervised classification under consideration of both Support Vector Machines and Random Forests. Experimental results obtained for a representative study area, including large parts of the city of Padang (Indonesia), assess the capabilities of the presented approach and confirm its great potential for a reliable area-wide estimation of SBSTs and an effective earthquake loss modeling based on remote sensing, which should be further explored in future research activities.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 104, June 2015, Pages 175-188
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 104, June 2015, Pages 175-188
نویسندگان
Christian GeiÃ, Patrick Aravena Pelizari, Mattia Marconcini, Wayan Sengara, Mark Edwards, Tobia Lakes, Hannes Taubenböck,