کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6949439 | 1451271 | 2015 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Spaceborne SAR data for global urban mapping at 30Â m resolution using a robust urban extractor
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
سیستم های اطلاعاتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
With more than half of the world population now living in cities and 1.4 billion more people expected to move into cities by 2030, urban areas pose significant challenges on local, regional and global environment. Timely and accurate information on spatial distributions and temporal changes of urban areas are therefore needed to support sustainable development and environmental change research. The objective of this research is to evaluate spaceborne SAR data for improved global urban mapping using a robust processing chain, the KTH-Pavia Urban Extractor. The proposed processing chain includes urban extraction based on spatial indices and Grey Level Co-occurrence Matrix (GLCM) textures, an existing method and several improvements i.e., SAR data preprocessing, enhancement, and post-processing. ENVISAT Advanced Synthetic Aperture Radar (ASAR) C-VV data at 30Â m resolution were selected over 10 global cities and a rural area from six continents to demonstrate the robustness of the improved method. The results show that the KTH-Pavia Urban Extractor is effective in extracting urban areas and small towns from ENVISAT ASAR data and built-up areas can be mapped at 30Â m resolution with very good accuracy using only one or two SAR images. These findings indicate that operational global urban mapping is possible with spaceborne SAR data, especially with the launch of Sentinel-1 that provides SAR data with global coverage, operational reliability and quick data delivery.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 103, May 2015, Pages 28-37
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 103, May 2015, Pages 28-37
نویسندگان
Yifang Ban, Alexander Jacob, Paolo Gamba,