کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6949604 | 1451279 | 2014 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An accurate and computationally efficient algorithm for ground peak identification in large footprint waveform LiDAR data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
سیستم های اطلاعاتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Large footprint waveform LiDAR sensors have been widely used for numerous airborne studies. Ground peak identification in a large footprint waveform is a significant bottleneck in exploring full usage of the waveform datasets. In the current study, an accurate and computationally efficient algorithm was developed for ground peak identification, called Filtering and Clustering Algorithm (FICA). The method was evaluated on Land, Vegetation, and Ice Sensor (LVIS) waveform datasets acquired over Central NY. FICA incorporates a set of multi-scale second derivative filters and a k-means clustering algorithm in order to avoid detecting false ground peaks. FICA was tested in five different land cover types (deciduous trees, coniferous trees, shrub, grass and developed area) and showed more accurate results when compared to existing algorithms. More specifically, compared with Gaussian decomposition, the RMSE ground peak identification by FICA was 2.82Â m (5.29Â m for GD) in deciduous plots, 3.25Â m (4.57Â m for GD) in coniferous plots, 2.63Â m (2.83Â m for GD) in shrub plots, 0.82Â m (0.93Â m for GD) in grass plots, and 0.70Â m (0.51Â m for GD) in plots of developed areas. FICA performance was also relatively consistent under various slope and canopy coverage (CC) conditions. In addition, FICA showed better computational efficiency compared to existing methods. FICA's major computational and accuracy advantage is a result of the adopted multi-scale signal processing procedures that concentrate on local portions of the signal as opposed to the Gaussian decomposition that uses a curve-fitting strategy applied in the entire signal. The FICA algorithm is a good candidate for large-scale implementation on future space-borne waveform LiDAR sensors.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 95, September 2014, Pages 81-92
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 95, September 2014, Pages 81-92
نویسندگان
Wei Zhuang, Giorgos Mountrakis,