کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6949786 1451292 2013 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data
ترجمه فارسی عنوان
رگرسیون حداقل مربعات جزئی غیر خطی دقت برآورد نیتروژن و فسفر علفی را با استفاده از داده های هیپرسیتراکتری و محیطی در محیط های مختلف افزایش می دهد
کلمات کلیدی
سنجش از دور در مقیاس یکپارچه، زیست بوم، رگرسیون حداقل مربع جزئی، شبکه عصبی مبتنی بر شعاع، غلظت نیتروژن، غلظت فسفر،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سیستم های اطلاعاتی
چکیده انگلیسی
Grass nitrogen (N) and phosphorus (P) concentrations are direct indicators of rangeland quality and provide imperative information for sound management of wildlife and livestock. It is challenging to estimate grass N and P concentrations using remote sensing in the savanna ecosystems. These areas are diverse and heterogeneous in soil and plant moisture, soil nutrients, grazing pressures, and human activities. The objective of the study is to test the performance of non-linear partial least squares regression (PLSR) for predicting grass N and P concentrations through integrating in situ hyperspectral remote sensing and environmental variables (climatic, edaphic and topographic). Data were collected along a land use gradient in the greater Kruger National Park region. The data consisted of: (i) in situ-measured hyperspectral spectra, (ii) environmental variables and measured grass N and P concentrations. The hyperspectral variables included published starch, N and protein spectral absorption features, red edge position, narrow-band indices such as simple ratio (SR) and normalized difference vegetation index (NDVI). The results of the non-linear PLSR were compared to those of conventional linear PLSR. Using non-linear PLSR, integrating in situ hyperspectral and environmental variables yielded the highest grass N and P estimation accuracy (R2 = 0.81, root mean square error (RMSE) = 0.08, and R2 = 0.80, RMSE = 0.03, respectively) as compared to using remote sensing variables only, and conventional PLSR. The study demonstrates the importance of an integrated modeling approach for estimating grass quality which is a crucial effort towards effective management and planning of protected and communal savanna ecosystems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 82, August 2013, Pages 27-40
نویسندگان
, , , , , , , ,