کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6950675 | 1451634 | 2018 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multi-objective noise estimator for the applications of de-noising and segmentation of MRI data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The present study proposes the noise estimation of Magnetic Resonance Imaging (MRI) data using multi-objective particle swarm optimisation (MOPSO). This adaptive noise estimation is based on the maximisation of the multiple quality measures, which enable the algorithm to achieve de-noising along with enhancement in the image features. The paper proposes two filtering approaches to de-noise MRI data. In first, MOPSO based noise estimation is followed by non-local statistics based Kalman filter, whereas, in the second approach, MOPSO based noise estimation is followed by Linear Minimum Mean Square Error (LMMSE) filter. The impact of de-noising on segmentation of MRI data has also been studied, for this purpose enhanced fuzzy c-means algorithm has been applied on filtered MRI data. The de-noising and segmentation performance of MOPSO-non local Kalman filter and MOPSO-LMMSE filters has been evaluated and compared with Wavelet filter, Wiener filter, non-local mean filter, standard Kalman and standard LMMSE filter. The proposed noise estimation approach followed by filtering is giving better de-noising and segmentation results as compared to standard filters considered.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomedical Signal Processing and Control - Volume 46, September 2018, Pages 249-259
Journal: Biomedical Signal Processing and Control - Volume 46, September 2018, Pages 249-259
نویسندگان
Munendra Singh, Ashish Verma, Neeraj Sharma,