کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6950760 | 1451636 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Inertial data-based gait metrics correspondence to Tinetti Test and Berg Balance Scale assessments
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The analysis of selected gait metrics and their correspondence to human gait and balance abilities is presented in this paper. Accelerometric and gyroscopic data have been acquired from 42 older patients for the entire Berg Balance Scale examination along with expert assessments and additional gait segments of a ca. 1â¯min duration evaluated by means of the Tinetti Test. The inertial data is analyzed for gait and step detection and subjected to a detailed gait analysis using four metrics for both legs separately: pitch angle change, average duration of step swing and stance phase, and the average phase duration ratio. The analysis is performed offline. The results are compared to expert assessments using Spearman's rank correlation coefficient with pâ¯<â¯0.001. Three metrics are yielding high correlation up to 0.797 with outcomes delivered by both considered examinations. Moreover, statistically significant differences are obtained for three metrics produced by patients divided into low and medium fall risk groups (Mann-Whitney U test, pâ¯<â¯0.007). The values of the temporal metrics are higher and the angle changes are lower in the medium fall risk group. The proposed features enable the assessment of gait quality and may be of great importance while designing novel tools for quick preliminary fall risk prediction.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomedical Signal Processing and Control - Volume 44, July 2018, Pages 38-47
Journal: Biomedical Signal Processing and Control - Volume 44, July 2018, Pages 38-47
نویسندگان
Zuzanna Miodonska, Paula Stepien, Pawel Badura, Beata Choroba, Jacek Kawa, JarosÅaw Derejczyk, Ewa Pietka,