کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6950816 | 1451637 | 2018 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An ICA-based spatial filtering approach to saccadic EOG signal recognition
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
To establish a stable electrooculography (EOG)-based communication way for the patients with motor diseases, we proposed a saccadic signal recognition algorithm using independent component analysis (ICA) in this paper. According to the mapping pattern of independent components (ICs)-to-electrode, we designed an optimum ICA-based spatial filter. On this basis, we extracted feature parameters of four types of saccadic signals (i.e., up, down, left, and right) by linearly projecting pre-processed EOG signals to the spatial filter. In order to determine saccade related independent components (SRICs) and improve the recognition accuracy, we also developed an automatic SRICs detection algorithm and sample optimization strategy. Under lab environment, we adopted the support vector model (SVM) as the classifier. The average recognition accuracy of unit saccadic signals achieved 99.0% (before sample optimization) and 99.57% (sample optimized) over 10 participants, which reveals that the proposed algorithm presents an excellent classification performance in saccadic signals recognition.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomedical Signal Processing and Control - Volume 43, May 2018, Pages 9-17
Journal: Biomedical Signal Processing and Control - Volume 43, May 2018, Pages 9-17
نویسندگان
Zhao Lv, Yang Wang, Chao Zhang, Xiangping Gao, Xiaopei Wu,