کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6951067 | 1451649 | 2017 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Voice pathology detection using interlaced derivative pattern on glottal source excitation
ترجمه فارسی عنوان
تشخیص آسیب شناسی صدای با استفاده از الگوی مشتق شده بین الگویی بر روی تحریک منبع گلوتات
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
In this paper, we propose a voice pathology detection and classification method using an interlaced derivative pattern (IDP), which involves an n-th order directional derivative, on a spectro-temporal description of a glottal source excitation signal. It is shown previously that directional information is useful to detect pathologies due to its encoding ability along time, frequency, and time-frequency axes. The IDP, being an n-th order derivative, is capable of describing more information than a first order derivative pattern by combining all the directional information into one. In the IDP, first-order derivatives are calculated in four directions, and these derivatives are thresholded with the center value of each directional channel to produce the final IDP. A support vector machine is used as a classification technique. Experiments are conducted using three different databases, which are the Massachusetts Eye and Ear Infirmary database, Saarbrucken Voice Database, and Arabic Voice Pathology Database. Experimental results show that the IDP based features give higher accuracy than that using other related features in all the three databases. The accuracies using cross-databases are also high using the IDP features.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomedical Signal Processing and Control - Volume 31, January 2017, Pages 156-164
Journal: Biomedical Signal Processing and Control - Volume 31, January 2017, Pages 156-164
نویسندگان
Ghulam Muhammad, Mansour Alsulaiman, Zulfiqar Ali, Tamer A. Mesallam, Mohamed Farahat, Khalid H. Malki, Ahmed Al-nasheri, Mohamed A. Bencherif,