کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6951256 1451654 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel generalized gradient vector flow snake model using minimal surface and component-normalized method for medical image segmentation
ترجمه فارسی عنوان
یک مدل جدید مارپیچ گرافیکی برگر معکوس با استفاده از روش حداقل سطح و نرمال سازی جزء برای تقسیم بندی تصویر پزشکی
کلمات کلیدی
مدل کنتور فعال، جریان بردار گرادیان، تقسیم تصویری پزشکی، دقت تقسیم بندی، میدان نیروی خارجی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
Active contours, or snakes, have a wide range of applications in medical image segmentation. Gradient vector flow (GVF) field, generalized GVF field and other external force fields have been proposed to address the problems of traditional snake models, such as low accuracy of segmentation and poor convergence ability in indentations. In order to further solve the two problems, we put forward a novel generalized gradient vector flow snake model using minimal surface and component-normalized method. We adopt minimal surface function instead of Laplace operator to settle the problem of low segmentation accuracy. We also use component-based normalization method instead of conventional vector-based normalization method to improve the ability of snake curve to converge into long and thin indentations. Experimental results and comparisons against other methods indicate that the proposed snake model own the ability to protect weak borders and solve the incorrect segmentation problem effectively. Meantime, our method performs much better than generalized GVF snake model in terms of long and thin indentation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomedical Signal Processing and Control - Volume 26, April 2016, Pages 1-10
نویسندگان
, ,