کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6951310 1451659 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Noise robustness analysis of sparse representation based classification method for non-stationary EEG signal classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
پیش نمایش صفحه اول مقاله
Noise robustness analysis of sparse representation based classification method for non-stationary EEG signal classification
چکیده انگلیسی
In the electroencephalogram (EEG)-based brain-computer interface (BCI) systems, classification is an important signal processing step to control external devices using brain activity. However, scalp-recorded EEG signals have inherent non-stationary characteristics; thus, the classification performance is deteriorated by changing the background activity of the EEG during the BCI experiment. Recently, the sparse representation based classification (SRC) method has shown a robust classification performance in many pattern recognition fields including BCI. In this study, we aim to analyze noise robustness of the SRC method to evaluate the capability of the SRC for non-stationary EEG signal classification. For this purpose, we generate noisy test signals by adding a noise source such as random Gaussian and scalp-recorded background noise into the original motor imagery based EEG signals. Using the noisy test signals and real online-experimental dataset, we compare the classification performance of the SRC and support vector machine (SVM). Furthermore, we analyze the unique classification mechanism of the SRC. We observed that the SRC method provided better classification accuracy and noise robustness compared with the SVM method. In addition, the SRC has an inherent adaptive classification mechanism that makes it suitable for time-varying EEG signal classification for online BCI systems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomedical Signal Processing and Control - Volume 21, August 2015, Pages 8-18
نویسندگان
, , , , , ,