کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6951375 1451662 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Affective detection based on an imbalanced fuzzy support vector machine
ترجمه فارسی عنوان
تشخیص مؤثر براساس یک ماشین بردار پشتیبانی فازی ناسازگار
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
The interpretation of physiological signals is an important subject in affective computing. In this paper, we report an experiment to collect affective galvanic skin response signals (GRS), and describe a new imbalanced fuzzy support vector machine (IBFSVM) for their classification. IBFSVM introduces denoising factors and class compensation factors, thus defining a new fuzzy membership. The effectiveness of IBFSVM is verified on various real and artificial datasets. We define an appropriate evaluation criterion (g_mean) that combines the classification accuracy of positive and negative samples, and show that IBFSVM outperforms traditional support vector machines on imbalanced datasets. By running the IBFSVM for the datasets in our experiment, we can find that the g_mean of happiness, sadness, angry and fear is 85.17%, 86.6%, 87.4%, and 81.53% respectively. So IBFSVM is an effective and feasible solution for imbalanced learning in our experiment.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomedical Signal Processing and Control - Volume 18, April 2015, Pages 118-126
نویسندگان
, ,