کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6951405 1451662 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classification of gait rhythm signals between patients with neuro-degenerative diseases and normal subjects: Experiments with statistical features and different classification models
ترجمه فارسی عنوان
طبقه بندی سیگنال های ریتم راه رفتن بین بیماران مبتلا به بیماری های ناباروری و افراد طبیعی: آزمایش با ویژگی های آماری و مدل های مختلف طبقه بندی
کلمات کلیدی
طبقه بندی پذیرش، بیماری های ناباروری، ویژگی های آماری، انتخاب ویژگی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
For the purpose of realizing an intelligent and highly accurate diagnosis system for neuro-degenerative diseases (NDD), such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD) and Huntington's disease (HD), the present study investigated the classification capability of different gait statistical features extracted from gait rhythm signals. Nine statistical measures, including several seldom-used variability measures for these signals, were calculated for each time series. Next, after an evaluation of four popular machine learning methods, the optimal feature subset was generated with a hill-climbing feature selection method. Experiments were performed on a data set with 16 healthy control (CO) subjects, 13 ALS, 15 PD and 20 HD patients. When evaluated with the leave-one-out cross-validation (LOOCV) method, the highest accuracy rate for discriminating between groups of NDD patients and healthy control subjects was 96.83%. The best classification accuracy (100%) was obtained with two subtype binary classifiers (PD vs. CO and HD vs. CO).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomedical Signal Processing and Control - Volume 18, April 2015, Pages 254-262
نویسندگان
, , ,