کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6951438 | 1451665 | 2015 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Classification of seizure and seizure-free EEG signals using local binary patterns
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Local binary pattern (LBP) is a texture descriptor that has been proven to be quite effective for various image analysis tasks in image processing. In this paper one-dimensional local binary pattern (1D-LBP) based features are used for classification of seizure and seizure-free electroencephalogram (EEG) signals. The proposed method employs a bank of Gabor filters for processing the EEG signals. The processed EEG signal is divided into smaller segments and histograms of 1D-LBPs of these segments are computed. Nearest neighbor classifier utilizes the histogram matching scores to determine whether the acquired EEG signal belongs to seizure or seizure-free category. Experimental results on publicly available database suggest that the proposed features effectively characterize local variations and are useful for classification of seizure and seizure-free EEG signals with a classification accuracy of 98.33%. This result demonstrates the superiority of our approach for classification of seizure and seizure-free EEG signals over recently proposed approaches in the literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomedical Signal Processing and Control - Volume 15, January 2015, Pages 33-40
Journal: Biomedical Signal Processing and Control - Volume 15, January 2015, Pages 33-40
نویسندگان
T. Sunil Kumar, Vivek Kanhangad, Ram Bilas Pachori,