کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6951527 | 1451686 | 2017 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Improving selection of synsets from WordNet for domain-specific word sense disambiguation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Word Sense Disambiguation (WSD) is a fundamental task useful for Information Retrieval, Information Extraction, web search, and indexing, among others. In the literature there exist several works dedicated to generic WSD task, but in recent years domain-specific WSD has attracted the attention of several researchers. In this sense, this paper describes an approach for domain-specific WSD by selecting the predominant sense (synset from WordNet) of ambiguous words. To achieve it the method uses two corpora: the domain-specific test corpus (containing target ambiguous words) and a domain-specific auxiliary corpus (obtained by using relevant words from the domain-specific test corpus). The approach has four main stages: (1) auxiliary corpus generation; (2) related features extraction (from the auxiliary corpus); (3) test features extraction (from the test corpus); and (4) features integration. The proposed approach has been tested on domain-specific corpora (Sports and Finance) and on one balanced corpus, BNC. Even though our WSD approach showed some limitations when dealing with the general-domain corpus, the obtained results for domain-specific corpora, which are our main interest, were better than those reported in previous works.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Speech & Language - Volume 41, January 2017, Pages 128-145
Journal: Computer Speech & Language - Volume 41, January 2017, Pages 128-145
نویسندگان
Ivan Lopez-Arevalo, Victor J. Sosa-Sosa, Franco Rojas-Lopez, Edgar Tello-Leal,