کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6954868 1451848 2017 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines
ترجمه فارسی عنوان
تشخیص و تشخیص غلتک بر اساس آنتروپی فازی متعدد چند ضلعی کامپوزیتی و ماشین های بردار حمایت از مجموعه
کلمات کلیدی
آنتروپی چند عاملی، آنتروپی فازی چند ضلعی کامپوزیتی، مجموعه سازنده دستگاه بردار پشتیبانی، تحمل نورد، تشخیص گسل،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
To timely detect the incipient failure of rolling bearing and find out the accurate fault location, a novel rolling bearing fault diagnosis method is proposed based on the composite multiscale fuzzy entropy (CMFE) and ensemble support vector machines (ESVMs). Fuzzy entropy (FuzzyEn), as an improvement of sample entropy (SampEn), is a new nonlinear method for measuring the complexity of time series. Since FuzzyEn (or SampEn) in single scale can not reflect the complexity effectively, multiscale fuzzy entropy (MFE) is developed by defining the FuzzyEns of coarse-grained time series, which represents the system dynamics in different scales. However, the MFE values will be affected by the data length, especially when the data are not long enough. By combining information of multiple coarse-grained time series in the same scale, the CMFE algorithm is proposed in this paper to enhance MFE, as well as FuzzyEn. Compared with MFE, with the increasing of scale factor, CMFE obtains much more stable and consistent values for a short-term time series. In this paper CMFE is employed to measure the complexity of vibration signals of rolling bearings and is applied to extract the nonlinear features hidden in the vibration signals. Also the physically meanings of CMFE being suitable for rolling bearing fault diagnosis are explored. Based on these, to fulfill an automatic fault diagnosis, the ensemble SVMs based multi-classifier is constructed for the intelligent classification of fault features. Finally, the proposed fault diagnosis method of rolling bearing is applied to experimental data analysis and the results indicate that the proposed method could effectively distinguish different fault categories and severities of rolling bearings.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanical Systems and Signal Processing - Volume 85, 15 February 2017, Pages 746-759
نویسندگان
, , ,