کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6955345 | 1451858 | 2016 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hidden Markov model and nuisance attribute projection based bearing performance degradation assessment
ترجمه فارسی عنوان
مدل مارکف مخفی و ارزیابی تخریب عملکرد تحمل بر روی طرح ریزی ویژگی های مزاحم
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
ارزیابی تخریب عملکرد تحمل باربری، مدل مخفی مارکف، طرح ریزی عصبانیت، یاتاقان، استخراج ویژگی، پروژکتور
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
Hidden Markov model (HMM) has been widely applied in bearing performance degradation assessment. As a machine learning-based model, its accuracy, subsequently, is dependent on the sensitivity of the features used to estimate the degradation performance of bearings. It׳s a big challenge to extract effective features which are not influenced by other qualities or attributes uncorrelated with the bearing degradation condition. In this paper, a bearing performance degradation assessment method based on HMM and nuisance attribute projection (NAP) is proposed. NAP can filter out the effect of nuisance attributes in feature space through projection. The new feature space projected by NAP is more sensitive to bearing health changes and barely influenced by other interferences occurring in operation condition. To verify the effectiveness of the proposed method, two different experimental databases are utilized. The results show that the combination of HMM and NAP can effectively improve the accuracy and robustness of the bearing performance degradation assessment system.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanical Systems and Signal Processing - Volumes 72â73, May 2016, Pages 184-205
Journal: Mechanical Systems and Signal Processing - Volumes 72â73, May 2016, Pages 184-205
نویسندگان
Huiming Jiang, Jin Chen, Guangming Dong,