کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6955815 1451862 2015 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel method using adaptive hidden semi-Markov model for multi-sensor monitoring equipment health prognosis
ترجمه فارسی عنوان
یک روش جدید با استفاده از مدل نیمه مارکوف مخفی پنهان برای پیشگیری از سلامت دستگاه های مانیتورینگ چند سنسور
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
Health prognosis for equipment is considered as a key process of the condition-based maintenance strategy. This paper presents an integrated framework for multi-sensor equipment diagnosis and prognosis based on adaptive hidden semi-Markov model (AHSMM). Unlike hidden semi-Markov model (HSMM), the basic algorithms in an AHSMM are first modified in order for decreasing computation and space complexity. Then, the maximum likelihood linear regression transformations method is used to train the output and duration distributions to re-estimate all unknown parameters. The AHSMM is used to identify the hidden degradation state and obtain the transition probabilities among health states and durations. Finally, through the proposed hazard rate equations, one can predict the useful remaining life of equipment with multi-sensor information. Our main results are verified in real world applications: monitoring hydraulic pumps from Caterpillar Inc. The results show that the proposed methods are more effective for multi-sensor monitoring equipment health prognosis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanical Systems and Signal Processing - Volumes 64–65, December 2015, Pages 217-232
نویسندگان
, , , , ,