کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6956318 | 1451868 | 2015 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Study on Hankel matrix-based SVD and its application in rolling element bearing fault diagnosis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Based on the traditional theory of singular value decomposition (SVD), singular values (SVs) and ratios of neighboring singular values (NSVRs) are introduced to the feature extraction of vibration signals. The proposed feature extraction method is called SV-NSVR. Combined with selected SV-NSVR features, continuous hidden Markov model (CHMM) is used to realize the automatic classification. Then the SV-NSVR and CHMM based method is applied in fault diagnosis and performance assessment of rolling element bearings. The simulation and experimental results show that this method has a higher accuracy for the bearing fault diagnosis compared with those using other SVD features, and it is effective for the performance assessment of rolling element bearings.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanical Systems and Signal Processing - Volumes 52â53, February 2015, Pages 338-359
Journal: Mechanical Systems and Signal Processing - Volumes 52â53, February 2015, Pages 338-359
نویسندگان
Huiming Jiang, Jin Chen, Guangming Dong, Tao Liu, Gang Chen,