کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6956354 | 1451868 | 2015 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Using a set of GM(1,1) models to predict values of diagnostic symptoms
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The main purpose of this study is to develop a methodology of predicting values of vibration symptoms of fan mills in a combined heat and power (CHP) plant. The study was based on grey system theory and GM(1,1) prognostic models with different window sizes for estimating model parameters. Such models have a number of features that are desirable from the point of view of data characteristics collected by the diagnostic system. When using moving window, GM(1,1) models tend to be adaptive. However, selecting an inappropriate window size can result in excessive forecast errors. The present study proposes three possible methods that can be used in automated diagnostic systems to counteract the excessive increase in the forecast error. A comparative analysis of their performance was conducted using data from fan mills in order to select the method which minimises the forecast error.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanical Systems and Signal Processing - Volumes 52â53, February 2015, Pages 416-425
Journal: Mechanical Systems and Signal Processing - Volumes 52â53, February 2015, Pages 416-425
نویسندگان
Maciej Tabaszewski, Czeslaw Cempel,