کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6956363 | 1451868 | 2015 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Switching Kalman filter for failure prognostic
ترجمه فارسی عنوان
تعویض فیلتر کلمن برای پیش آگهی شکست
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
سوئیچینگ فیلتر کالمن، غلتک عنصر بلبرینگ، برآورد بیزی، پیشگیری، عمر مفید دیگر،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
The use of condition monitoring (CM) data to predict remaining useful life have been growing with increasing use of health and usage monitoring systems on aircraft. There are many data-driven methodologies available for the prediction and popular ones include artificial intelligence and statistical based approach. The drawback of such approaches is that they require a lot of failure data for training which can be scarce in practice. In lieu of this, methods using state-space and regression-based models that extract information from the data history itself have been explored. However, such methods have their own limitations as they utilize a single time-invariant model which does not represent changing degradation path well. This causes most degradation modeling studies to focus only on segments of their CM data that behaves close to the assumed model. In this paper, a state-space based method; the Switching Kalman Filter (SKF), is adopted for model estimation and life prediction. The SKF approach however, uses multiple models from which the most probable model is inferred from the CM data using Bayesian estimation before it is applied for prediction. At the same time, the inference of the degradation model itself can provide maintainers with more information for their planning. This SKF approach is demonstrated with a case study on gearbox bearings that were found defective from the Republic of Singapore Air Force AH64D helicopter. The use of in-service CM data allows the approach to be applied in a practical scenario and results showed that the developed SKF approach is a promising tool to support maintenance decision-making.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanical Systems and Signal Processing - Volumes 52â53, February 2015, Pages 426-435
Journal: Mechanical Systems and Signal Processing - Volumes 52â53, February 2015, Pages 426-435
نویسندگان
Chi Keong Reuben Lim, David Mba,