کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6957444 | 1451917 | 2018 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Network-based robust filtering for Markovian jump systems with incomplete transition probabilities
ترجمه فارسی عنوان
فیلترینگ قوی مبتنی بر شبکه برای سیستم پرش مارکوویچ با احتمال انتقال ناقص
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
فیلترشکن قوی سیستم های پرش مارکوویکی زمان گسسته، کوانتسی سیگنال، تلفات بسته داده ها،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
In this paper, the Hâ filtering problem is investigated for a class of discrete-time Markovian jump nonlinear systems with partly unknown transition probabilities and subject to sensor saturation over unreliable communication. The description of researched plant includes global Lipschitz nonlinearities and state-dependent random noise and external-disturbance. A decomposition approach is used to deal with the characteristic of sensor saturation. Since the communication links between the plant and filter lack enough reliability, the effects of output quantization and data packet losses should both be considered. The proposed quantizer's parameter is on-line updating and the corresponding practical adjusting rule can ensure the dynamic performance of the controlled system. Among different operation modes, the cross coupling between system matrices and Lyapunov matrices is disposed by introducing proper slack matrix variables. The purpose of this work is to design a full-order filter based on incomplete output measurements in order to guarantee the stochastic stability of the estimation error. Precise expression of the filters and related analysis are depicted in this paper. Finally, a numerical simulation is provided to show the effectiveness of the designing filtering method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 150, September 2018, Pages 90-101
Journal: Signal Processing - Volume 150, September 2018, Pages 90-101
نویسندگان
Dongyang Zhao, Yu Liu, Ming Liu, Jinyong Yu, Yan Shi,