کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6957642 | 1451919 | 2018 | 23 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Estimating the Laplacian matrix of Gaussian mixtures for signal processing on graphs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Recent works in signal processing on graphs have been driven to estimate the precision matrix and to use it as the graph Laplacian matrix. The normalized elements of the precision matrix are the partial correlation coefficients which measure the pairwise conditional linear dependencies of the graph. However, the non-linear dependencies inherent in any non-Gaussian model cannot be captured. We propose in this paper a generalized partial correlation coefficient which is derived by assuming an underlying multivariate Gaussian Mixture Model of the observations. Exact and approximate methods are proposed to estimate the generalized partial correlation coefficients from estimates of the Gaussian Mixture Model parameters. Thus it may find application in any non-Gaussian scenario where the Laplacian matrix is to be learned from training signals.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 148, July 2018, Pages 241-249
Journal: Signal Processing - Volume 148, July 2018, Pages 241-249
نویسندگان
Jordi Belda, Luis Vergara, Addisson Salazar, Gonzalo Safont,