کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6957711 | 1451920 | 2018 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Vehicle color recognition using Multiple-Layer Feature Representations of lightweight convolutional neural network
ترجمه فارسی عنوان
به رسمیت شناختن رنگ خودرو با استفاده از ویژگی های چند لایه نمایندگی از شبکه عصبی کانولا سبک وزن
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
معرفی چندین لایه ویژگی، شبکه عصبی کانولوشن سبک تشخیص رنگ خودرو، تطبیق هرم فضایی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
In this paper, a vehicle color recognition method using lightweight convolutional neural network (CNN) is proposed. Firstly, a lightweight CNN network architecture is specifically designed for the recognition task, which contains five layers, i.e. three convolutional layers, a global pooling layer and a fully connected layer. Different from the existing CNN based methods that only use the features output from the final layer for recognition, in this paper, the feature maps of intermediate convolutional layers are all applied for recognition based on the fact that these convolutional features can provide hierarchical representations of the images. Spatial Pyramid Matching (SPM) strategy is adopted to divide the feature map, and each SPM sub-region is encoded to generate a feature representation vector. These feature representation vectors of convolutional layers and the output feature vector of the global pooling layer are normalized and cascaded as a whole feature vector, which is finally utilized to train Support Vector Machine classifier to obtain the recognition model. The experimental results show that, compared with the state-of-art methods, the proposed method can obtain more than 0.7% higher recognition accuracy, up to 95.41%, while the dimensionality of the feature vector is only 18% and the memory footprint is only 0.5%.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 147, June 2018, Pages 146-153
Journal: Signal Processing - Volume 147, June 2018, Pages 146-153
نویسندگان
Zhang Qiang, Zhuo Li, Li Jiafeng, Zhang Jing, Zhang Hui, Li Xiaoguang,