| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 6957826 | 1451922 | 2018 | 29 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Recurrent attention network using spatial-temporal relations for action recognition
												
											ترجمه فارسی عنوان
													شبکه توجه مجدد با استفاده از روابط فضایی-زمانی برای تشخیص عمل 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													 پردازش سیگنال
												
											چکیده انگلیسی
												Action recognition in videos, which contains many complex and semantic contents, is still a challenging task in computer vision research. In this paper, we propose a novel attention mechanism that leverages the gate system of Long Short Term Memory (LSTM) to compute the attention weights for action recognition. The proposed attention mechanism is embedded in a recurrent attention network that can explore the spatial-temporal relations between different local regions to concentrate important ones. For more accurate attention, we derive a new attention unit from the standard LSTM unit so as how important the local region is only depends on its input gate. Because of exploring spatial-temporal relations and using attention unit, our model can attend more accurately and thus achieve a better action recognition performance. We evaluate our proposed model on three datasets: UCF101, HMDB51 and Hollywood2, and results illustrate that our model outperforms other attention models with significant improvements.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 145, April 2018, Pages 137-145
											Journal: Signal Processing - Volume 145, April 2018, Pages 137-145
نویسندگان
												Mingxing Zhang, Yang Yang, Yanli Ji, Ning Xie, Fumin Shen, 
											