کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6957922 | 1451923 | 2018 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Learning social regularized user representation in recommender system
ترجمه فارسی عنوان
یادگیری بازنویسی کاربر اجتماعی قانونی در سیستم پیشنهاد دهنده
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تنظیم شبکه اجتماعی، تعبیه عمیق، سیستم توصیه شده، مدل زبان عصبی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
Appropriate user and item representation learning is critical to a successful recommender system. A set of models from natural language processing domain, namely neural language models, have recently been utilized to user and item representation learning in standard recommendation tasks. This paper proposes to exploit neural language models in the social recommendation task. Unlike previous studies that focus on modeling the user-item interaction matrix and only consider the item-level context, this paper models user social relationship information and adds an additional layer to incorporate user-level context. The derived representation is very like the social regularization imposed in matrix factorization-based recommendation, but with more flexible context. Experiments on a Douban movie dataset validate the advantage of the proposed model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 144, March 2018, Pages 306-310
Journal: Signal Processing - Volume 144, March 2018, Pages 306-310
نویسندگان
Jian-sheng Guan, Min Xu, Xiang-song Kong,