کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6958587 | 1451947 | 2016 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Approximate decoding for network coded inter-dependent data
ترجمه فارسی عنوان
رمزگشایی تقریبی برای داده های وابسته به شبکه وابسته به شبکه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
برنامه نویسی شبکه، تقریبا رمزگشایی، منبع وابستگی متقابل، شبکه های ویژه داده های تحمل آمیز،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
In this paper, we consider decoding of loss tolerant data encoded by network coding and transmitted over error-prone networks. Intermediate network nodes typically perform the random linear network coding in a Galois field and a Gaussian elimination is used for decoding process in the terminal nodes. In such settings, conventional decoding approaches can unfortunately not reconstruct any encoded data unless they receive at least as many coded packets as the original number of packets. In this paper, we rather propose to exploit the incomplete data at a receiver without major modifications to the conventional decoding architecture. We study the problem of approximate decoding for inter-dependent sources where the difference between source vectors is characterized by a unimodal distribution. We propose a mode-based algorithm for approximate decoding, where the mode of the source data distribution is used to reconstruct source data. We further improve the mode-based approximate decoding algorithm by using additional short information that is referred to as position similarity information (PSI). We analytically study the impact of PSI size on the approximate decoding performance and show that the optimal size of PSI can be determined based on performance requirements of applications. The proposed approach has been tested in an illustrative example of data collection in sensor networks. The simulation results confirm the benefits of approximate decoding for inter-dependent sources and further show that 93.3% of decoding errors are eliminated when the approximate decoding uses appropriate PSI.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 120, March 2016, Pages 222-235
Journal: Signal Processing - Volume 120, March 2016, Pages 222-235
نویسندگان
Minhae Kwon, Hyunggon Park, Nikolaos Thomos, Pascal Frossard,