کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6959652 | 1451959 | 2015 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Analysis of reduced-search BCJR algorithms for input estimation in a jump linear system
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Linear systems with unknown finite-valued inputs are of interest in all those hybrid frameworks where switches or jumps may change the continuous dynamics of a linear system. Many models have been proposed in this sense; in most cases, a probabilistic distribution on the input is assumed to be known and used as prior information for estimation. In this paper, we propose a simple model of jump linear system and develop low complexity algorithms, based on BCJR, to retrieve the input. We consider systems over a possibly infinite time horizon, which motivates the study of on-line, causal algorithms. Our main purpose is to provide a rigorous theoretical analysis of the performance of the proposed techniques: an error function is defined and its distribution is proved to converge, exploiting mathematical tools from Markov Processes theory and ergodic theorems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 108, March 2015, Pages 341-350
Journal: Signal Processing - Volume 108, March 2015, Pages 341-350
نویسندگان
Fabio Fagnani, Sophie M. Fosson,