کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6960386 1451970 2014 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hierarchical particle filtering for multi-modal data fusion with application to multiple-target tracking
ترجمه فارسی عنوان
فیلتر کردن ذرات سلسله مراتبی برای تلفیقی داده های چند منظوره با استفاده از ردیابی چند هدف
کلمات کلیدی
شبکه سنسور، ردیابی چند هدفه، سنسورهای چندگانه همجوشی داده ها، احتمال مستقل، فیلترینگ باینری متوالی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
We propose a sequential and hierarchical Monte Carlo Bayesian framework for state estimation using multi-modal data. The proposed hierarchical particle filter (HPF) estimates the global filtered posterior density of the unknown state in multiple stages, by partitioning the state space and the measurement space into lower dimensional subspaces. At each stage, we find an estimate of one partition using the measurements from the corresponding partition, and the information from the previous stages. We demonstrate the proposed framework for joint initiation, termination and tracking of multiple targets using multi-modal sensors. Here, the multi-modal data consists of the measurements collected from a radar, an infrared camera and a human scout. We compare the performance of the proposed HPF with the performance of a standard particle filter that uses linear opinion (SPF-LO), independent opinion (SPF-IO), and independent likelihood (SPF-IL) for data fusion. The results show that HPF improves the robustness of the tracking system in handling the initiation and termination of targets and provides a lower mean-squared error (RMSE) in the position estimates of the targets that maintain their tracks. The RMSE in the velocity estimates using the HPF was similar to the RMSE obtained using SPF based methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 97, April 2014, Pages 207-220
نویسندگان
, ,