کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6960388 | 1451970 | 2014 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Gaussian mixture reduction based on fuzzy ART for extended target tracking
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents a global Gaussian mixture (GM) reduction algorithm via clustering for extended target tracking in clutter. The proposed global clustering algorithm is obtained by combining a fuzzy Adaptive Resonance Theory (ART) neural network architecture with the weighted Kullback-Leibler (KL) difference which describes discrimination of one component from another. Therefore, we call the proposed algorithm as ART-KL clustering (ART-KL-C) in the paper. The weighted KL difference is used as a category choice function of ART-KL-C, derived by considering both the KL divergence between two components and their weights. The performance of ART-KL-C is evaluated by the normalized integrated squared distance (NISD) measure, which describes the deviation between the original and reduced GM. The proposed algorithm is tested on both one-dimensional and four-dimensional simulation examples, and the results show that the proposed algorithm can more accurately approximate the original mixture and is useful in extended target tracking.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 97, April 2014, Pages 232-241
Journal: Signal Processing - Volume 97, April 2014, Pages 232-241
نویسندگان
Yongquan Zhang, Hongbing Ji,