کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6965056 | 1452880 | 2018 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A Bayesian multivariate hierarchical spatial joint model for predicting crash counts by crash type at intersections and segments along corridors
ترجمه فارسی عنوان
یک مدل مشترک فضایی سلسله مراتبی بیزی برای پیش بینی شمارش تصادفات از نوع تصادف در تقاطع ها و بخش ها در امتداد راهرو
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
مدل فضایی سلسله مراتبی چند متغیره، تجزیه و تحلیل ایمنی راهرو، مدل مشترک، تصادف در، انواع،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
بهداشت و امنیت شیمی
چکیده انگلیسی
The safety and operational improvements of corridors have been the focus of many studies since they carry most traffic on the road network. Estimating a crash prediction model for total crash counts identifies the crash risk factors that are associated with crash counts at a specific type of road entity. However, this may not reveal useful information to detect the road problems and implement effective countermeasures. Therefore, investigating the contributing factors for crash counts by different types is of great importance. This study aims to provide a good understanding of the contributing factors to crash counts by different types at intersections and roadway segments along corridors. Data from 255 signalized intersections and 220 roadway segments along 20 corridors have been used for this study. The investigated crash types include same direction, angle and turning, opposite direction, non-motorized, single vehicle, and other multi-vehicle crashes. Two models have been estimated, which are multivariate hierarchical Poisson-lognormal (HPLN) spatial joint model and univariate HPLN spatial joint model. The significant variables include exposure measures and some geometric design variables at intersection, roadway segment, and corridor levels. The results revealed that the multivariate HPLN spatial joint model outperforms the univariate HPLN spatial joint model. Also, the correlations among crash counts of most types exist at individual road entity and between adjacent entities. Additionally, the significant explanatory variables are different across crash types, and the magnitude of the parameter estimates for the same independent variable is different across crash types. The results emphasize the need for estimating crash counts by type in a multivariate form to better detect the problems and provide appropriate countermeasures.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Accident Analysis & Prevention - Volume 119, October 2018, Pages 263-273
Journal: Accident Analysis & Prevention - Volume 119, October 2018, Pages 263-273
نویسندگان
Saif A. Alarifi, Mohamed Abdel-Aty, Jaeyoung Lee,