کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6975236 | 1453382 | 2016 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Exploring the association of rear-end crash propensity and micro-scale driver behavior
ترجمه فارسی عنوان
بررسی رابطه احتمال قطعی عقب و رفتار راننده در مقیاس کوچک
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
سقوط انتهای عقب، حسگر درون خودرو، رفتار راننده، ایمنی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
بهداشت و امنیت شیمی
چکیده انگلیسی
The relationship between driver behavior at the tactical level and crash experience is a long sought association that has been elusive to explore. The availability of in-vehicle sensing devices capable of capturing and documenting micro-scale dynamic driver behavior offers the opportunity to begin such an exploration. This study integrates rear-end crash data experienced on a 63-mile section of I-40 in North Carolina over a four-year period with three months of micro-scale driving behavioral data gathered by an in-vehicle sensing system (i2D) that records and dispatches second by second vehicle dynamics data to a central database. The information collected by the i2D devices came from a fleet of about 20 vehicles driven by volunteers in their naturalistic driving environment. Additionally all crash and driver data were geo-located onto a link-based GIS environment. The objective of this study is to explore the association of crash propensity and micro-scale driving behavior. The initial findings of this research are promising. First, over 85% of all rear-end crashes occurred on 30 segments extending from 2000 feet upstream of an on-ramp to the on-ramp itself. Secondly, on those segments with high crash rates we have detected a high propensity of drivers to decelerate at high rates (4Â m/s2 or more). We have also tested and confirmed that the sharp deceleration phenomenon is not confined to a few drivers, but appears to be common for the high-crash segments, using trip-based analyses.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Safety Science - Volume 89, November 2016, Pages 45-54
Journal: Safety Science - Volume 89, November 2016, Pages 45-54
نویسندگان
SangKey Kim, Tai-Jin Song, Nagui M. Rouphail, Seyedbehzad Aghdashi, Ana Amaro, Gonçalo Gonçalves,