کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7053327 | 1457479 | 2016 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this research, the viscosity of the aqueous nanofluid of TiO2 has been modeled by artificial neural networks using experimental data. Artificial neural networks are able to estimate the pattern of dynamic viscosity variation along with temperature and nanoparticles mass fraction with a high precision. A network with one hidden layer and 4 neurons has been used. The regression coefficient was obtained 0.9998 in this modeling, which shows very high precision of neural network with a very simple structure. In addition, a relationship in terms of mass fraction and temperature was presented in order to predict the viscosity of this nanofluid. This correlation can estimate the viscosity of TiO2-water nanofluid in a wide range of nanoparticles mass fraction with a maximum error of 0.5 %.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Communications in Heat and Mass Transfer - Volume 75, July 2016, Pages 192-196
Journal: International Communications in Heat and Mass Transfer - Volume 75, July 2016, Pages 192-196
نویسندگان
Mohammad Hemmat Esfe, Mohammad Reza Hassani Ahangar, Mousa Rejvani, Davood Toghraie, Mohammad Hadi Hajmohammad,