کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
708959 1461105 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Acoustic velocity measurements in resonators of thermoacoustic systems using hot-wire anemometry
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Acoustic velocity measurements in resonators of thermoacoustic systems using hot-wire anemometry
چکیده انگلیسی


• New results on hot-wire anemometry in oscillating flows are presented.
• The acoustic velocity plays a central role in thermoacoustics and pulsed flows.
• The model involves coupling effect and dissipation effects in boundaries layers.
• The amplitude calibration law depends on the frequency range.
• The dynamic heat transfer around the hot wire differs from steady flow heat transfer.

Acoustic velocity measurements in resonators of thermoacoustic systems using hot-wire anemometry technique flow are presented. The hot-wire calibration is based on the determination of the acoustic velocity reference value through an acoustic pressure measurement and their relationship using a linear acoustic model. In this model, an analytical approach involving the coupling between the sound source and the resonant cavity effects and the viscous and the thermal effects in the boundary layers is used. The amplitude and phase calibrations are reported for the first time, simultaneously, either by varying the sound source input voltage for a fixed frequency, or by varying the frequency for a given source input voltage. The amplitude calibration is detailed by using a filtering technique to eliminate either the acoustic streaming effects or the anemometer basic electric voltage variations effects. This provides a simple way to an amplitude calibration with good accuracy when measuring an average of a stationary oscillating velocity. The phase calibration is proposed here by considering the phase difference between the microphone and the hot-wire anemometer output signals. The results obtained by using a simple fluid-filled resonant cavity are encouraging on the feasibility of this method to carry out a first-order acoustic velocity measurement. However, the complexity of the dynamic calibration due to that of the heat transfer mechanism around the hot-wire probe in various frequency ranges clearly merits more investigation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Flow Measurement and Instrumentation - Volume 32, August 2013, Pages 41–50
نویسندگان
, , ,