کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
709630 892078 2012 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stochastic Model Validation and Estimation for Linear Discrete-Time Systems with Partial Prior Information
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Stochastic Model Validation and Estimation for Linear Discrete-Time Systems with Partial Prior Information
چکیده انگلیسی

The problem of recursive estimation and model validation for linear discrete-time systems with partial prior information is examined. More specifically, an underlying linear discrete-time system is considered where the statistics of the driving noise is assumed to be known only partially; i.e. a class of noise inputs is given from which the underlying actual noise is assumed to be chosen. A set-valued estimator is then derived and the conditional expectation is shown to belong to an ellipsoidal set consistent with the measurements and the underlying noise description. When the underlying noise is consistent with the underlying partial model and a sequence of realized measurements is given then the ellipsoidal, set-valued, estimate is computable using a Kalman filter-type algorithm. The estimator inherently solves a stochastic model validation problem whereby it is possible to estimate the consistency between the assumed model, knowledge on the partial prior noise statistics and the measured data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 45, Issue 20, January 2012, Pages 427–431
نویسندگان
,