کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
711379 | 892128 | 2008 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
UKF Based Nonlinear Filtering for Parameter Estimation in Linear Systems with Correlated Noise
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Based on the Unscented Kalman Filter (UKF), the nonlinear filter is presented for parameter estimation in linear system with correlated noise where the unknown parameters are estimated as a part of an enlarged state vector. To avoid the computational burden in determining the state estimates when only the parameter estimates are required, a new form of UKF, where the state consists only of the parameters to be estimated, is proposed. The algorithm is based on the inclusion of the computed residuals in the observation matrix of a state representation of the system. Convergence properties of the proposed algorithm are analyzed and ensured. The algorithm is verified by using Matlab simulations on the vehicle navigation systems with aided GPS.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 41, Issue 2, 2008, Pages 474–479
Journal: IFAC Proceedings Volumes - Volume 41, Issue 2, 2008, Pages 474–479
نویسندگان
Jiahe Xu, Tatjana Kolemisevska-Gugulovska, Xiuping Zheng, Yuanwei Jing, Georgi M. Dimirovski,