کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7116296 | 1461180 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Nonlinear system identification based on Takagi-Sugeno fuzzy modeling and unscented Kalman filter
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper proposes two novel Kalman-based learning algorithms for an online Takagi-Sugeno (TS) fuzzy model identification. The proposed approaches are designed based on the unscented Kalman filter (UKF) and the concept of dual estimation. Contrary to the extended Kalman filter (EKF) which utilizes derivatives of nonlinear functions, the UKF employs the unscented transformation. Consequently, non-differentiable membership functions can be considered in the structure of the TS models. This makes the proposed algorithms to be applicable for the online parameter calculation of wider classes of TS models compared to the recently published papers concerning the same issue. Furthermore, because of the great capability of the UKF in handling severe nonlinear dynamics, the proposed approaches can effectively approximate the nonlinear systems. Finally, numerical and practical examples are provided to show the advantages of the proposed approaches. Simulation results reveal the effectiveness of the proposed methods and performance improvement based on the root mean square (RMS) of the estimation error compared to the existing results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISA Transactions - Volume 74, March 2018, Pages 134-143
Journal: ISA Transactions - Volume 74, March 2018, Pages 134-143
نویسندگان
Navid Vafamand, Mohammad Mehdi Arefi, Alireza Khayatian,