کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
712695 892155 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Robust Fault Detection with missing data via Sparse Decomposition
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Robust Fault Detection with missing data via Sparse Decomposition
چکیده انگلیسی

Data-driven fault diagnosis doesn't depend upon the precise model of an industrial process, however, the quality of the process data set has an important effect on its result. As a quite common phenomenon, the process data sets with missing data usually reduce the performance of data based algorithms. In this paper, a novel data-driven fault detection method based on sparse decomposition is proposed to deal with the issue of missing data. In our approach, the K-SVD and OMP algorithms are used to learn the sparse representation model of the training data and to conduct the sparse decomposition of the testing data, respectively. Compared to the traditional fault detection method, PC A, our sparse decomposition based method outperforms PCA with missing data. At last, simulation experiments verify our result.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 46, Issue 13, 2013, Pages 321-326