کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
712700 892155 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Identifying Changes in Human Operator Mental Workload by Locally Linear Embedding and Support Vector Clustering Approaches
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Identifying Changes in Human Operator Mental Workload by Locally Linear Embedding and Support Vector Clustering Approaches
چکیده انگلیسی

This paper describes a psychophysiological-signal-based clustering framework for detecting the changes in operator mental workload incurred by a simulated process control task. A combination of locally linear embedding and support vector clustering approaches is adopted. The unsupervised method is shown to be able to extract features from several channels of the electroencephalogram (EEG) data and to determine whether or not the level of mental workload changes. Simulation results have also demonstrated that a few data clusters can be derived to interpret the change in the operator workload.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 46, Issue 13, 2013, Pages 353-358