کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
713035 892161 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Combining the best linear approximation and dimension reduction to identify the linear blocks of parallel Wiener systems
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Combining the best linear approximation and dimension reduction to identify the linear blocks of parallel Wiener systems
چکیده انگلیسی

A Wiener model is a fairly simple, well known, and often used nonlinear block-oriented black-box model. A possible generalization of the class of Wiener models lies in the parallel Wiener model class. This paper presents a method to estimate the linear time-invariant blocks of such parallel Wiener models from input/output data only. The proposed estimation method combines the knowledge obtained by estimating the best linear approximation of a nonlinear system with the MAVE dimension reduction method to estimate the linear time-invariant blocks present in the model. The estimation of the static nonlinearity boils down to a standard static nonlinearity estimation problem starting from input-output data once the linear blocks are known.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 46, Issue 11, 2013, Pages 372-377