کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
713036 892161 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Model Selection of Hammerstein System Nonlinearity under Heavy Noise
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Model Selection of Hammerstein System Nonlinearity under Heavy Noise
چکیده انگلیسی

The paper deals with the problem of automatic model selection of the nonlinear characteristic in a block-oriented dynamic system. We look for the parametric model of Hammerstein system nonlinearity. From the finite set of candidate classes of parametric models we select the best one on the basis of the input-output measurement data, using the concept of nearest neighbour borrowed from pattern recognitions techniques. The algorithm uses the pattern of the true characteristic generated by its nonparametric estimates on the grid of fixed (e.g. equidistant) points. Each class generates parametrized learning sequence through the values on the same grid of points. Next, for each class, the optimal parameters are computed by the least squares method. Finally, the nearest neighbour approach is applied for the selection of the best model in the mean square sense. The idea is presented on the exemplary competition between polynomial, exponential and piece-wise linear models of the same complexity (i.e. number of parameters needed to be stored in memory). For all classes, the upper bounds of the integrated approximation errors of the true characteristic are computed and compared.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 46, Issue 11, 2013, Pages 378-383