کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
713055 892161 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Data-driven bandwidth choice for gamma kernel estimates of density derivatives on the positive semi-axis
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Data-driven bandwidth choice for gamma kernel estimates of density derivatives on the positive semi-axis
چکیده انگلیسی

In some applications it is necessary to estimate derivatives of probability densities defined on the positive semi-axis. The quality of nonparametric estimates of the probability densities and their derivatives are strongly influenced by smoothing parameters (bandwidths). In this paper an expression for the optimal smoothing parameter of the gamma kernel estimate of the density derivative is obtained. For this parameter data-driven estimates based on methods called “rule of thumb” and “cross-validation” are constructed. The quality of the estimates is verified and demonstrated on examples of density derivatives generated by Maxwell and Weibull distributions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 46, Issue 11, 2013, Pages 500-505