کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
713073 892161 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Similarity improvement using angular deviation in multimodel nonlinear system identification
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Similarity improvement using angular deviation in multimodel nonlinear system identification
چکیده انگلیسی

In this work an unsupervised fuzzy learning method for the identification of nonlinear dynamical systems is designed. Accordingly, the learning process is featured by an incremental fuzzy clustering algorithm involving, in addition to the usual Euclidian distance, a new angular deviation. It turns out that: (i) the domain associated to each local model is better located compared to methods based on only Euclidian distance; (ii) the concentration phenomenon, observed when using standard metric classification, is highly reduced. These futures are confirmed by simulation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 46, Issue 11, 2013, Pages 605-610